Thursday, November 8, 2012 Agenda: -TISK & No MM

- ·Lesson 5-5:Triangle Inequalities
- ·Homework: 5-5 Worksheet

TISK Problems

- 1) Simplify: $\frac{32}{\sqrt{8}}$
- 2) Simplify: $\sqrt{1008}$
- 3) Find the slope of the line that passes through the points (5, -7) and (8, 2)

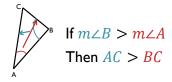
Homework Check

- \overline{BC} I) 2)
- \overline{MN}
- 9) $D\left(2\frac{1}{2},0\right)$, $E\left(7\frac{1}{2},2\right)$, F(5,4) 10) Work should be shown for slope and Distance
- 3) 10
- Formula. 11) (2,8), (0, -2), and (8, 10)
- 14 4)
- 12) (3, -1), (11, 3) and (7, 9) 13) 40
- 9 5)
- 6) 31
- 7) 6
- Through Al \angle s, \angle 4 \cong \angle 2, \angle 8 \cong \angle 5, \angle 12 \cong \angle 3, then through corresponding angles, \angle 10 \cong \angle 7, \angle 1 \cong \angle 5, \angle 1 \cong \angle 11, \angle 9 \cong \angle 6, \angle 2 \cong \angle 10, \angle 3 \cong \angle 6. Therefore, by the transitive property, \angle 1 \cong \angle 5 \cong \angle 8 \cong \angle 11, \angle 2 \cong \angle 4 \cong \angle 7 \cong \angle 10, \angle 3 \cong \angle 6 \cong ∠9 ≅ ∠12.

§5.5 Inequalities in One Triangle

Theorems

• If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side.



If AC > BC

Then $m \angle B > m \angle A$

§5.5 Inequalities in One Triangle

- Theorems
 - If one angle of a triangle is larger than another angle, then the side opposite the longer angle is larger than the side opposite the smaller angle.

Example

• Write the measurements of the sides in order from least to greatest.

BC < AC < AB

Theorems

- Exterior Angle Inequality
- The measure of an exterior angle of a triangle is greater than the measure of either of the two nonadjacent interior angles.

 $m \angle 1 > m \angle B$

AND $m \angle 1 > m \angle A$

Theorems

- Triangle Inequality
 - The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

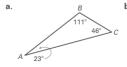
$$AB + BC > AC$$

$$\begin{array}{c} \mathsf{AND} \\ \mathsf{BC} + \mathsf{CA} > \mathsf{AB} \\ \mathsf{AND} \end{array}$$

$$AB + CA > BC$$

Finding possible side lengths.

 A triangle has one side of 10 cm and another of 14 cm. Describe the possible lengths of the third side.



$$AB + BC > AC$$
 $AB + AC > BC$
 $10 + 14 > AC$ $10 + AC > 14$

$$\begin{array}{ccc}
+ 14 > AC & 10 + AC > 14 \\
24 > AC & AC > 4
\end{array}$$

Extra Examples

Write the measures in the triangles in order from least to greatest.

Extra Examples			
The figure below shows the side view of an Adirondack chair. In the figure,			
$\overline{JL} \cong \overline{LK}$ and $JK < JL$. What can you conclude about the angles in $\triangle JKL$?	L		
A			
	\		